The gap between desired and observed fertility in Europe. Part 2: Childlessness levels.

To better understand the effect of postponement we tried to measure it by calculating the effect of time spent on contraception while in a union by women who want to have children, a ‘conscious’ way to postpone childbearing.

Involuntary childlessness has gained momentum in mainstream media, which attribute a large part (if not the totality) of the blame on the postponement of childbearing: women wait too long to have children, they don’t hear their biological clock ticking and bam! no children. Ever.

Delaying childbearing to later ages has undoubtedly a repercussion on the biological ability to have children, but it is hardly a simple component of the total effect. What the mainstream discussion is often missing on is that the great majority of children are conceived in unions, hence it is a couple’s decision to have children. Indeed, being single is an important if not pivotal deterrent to motherhood, usually delayed until union formation.

This is why it is important to consider factors such as union dissolution risk to appreciate the variation in involuntary childlessness. To better understand the effect of postponement we tried to measure it by calculating the effect of time spent on contraception while in a union by women who want to have children, a ‘conscious’ way to postpone childbearing.

This is a preview of average population childlessness obtained through simulation using 3 variables: celibacy (%of women ending up single and never entering a union), divorce (%women previously in a union but currently without a partner), and waiting time, the average time spent on contraception at the beginning of a union by a woman who wishes to have children.

childlessness

>ggplot(dt, aes( Age, value, linetype=Variable, col=Variable))+
> geom_line( size=1) +
> scale_color_manual( values=c( "black", "#666666", "grey","black", "#666666", "grey"), guide=guide_legend( nrow=3, byrow=F, title =  "Childlessness" )) +
> xlab("")+
>ylab("")+
>scale_linetype_manual( values=c("solid", "solid",  "solid", "twodash", "dotted", "dashed"), guide=guide_legend( nrow=3, byrow= F, title =  "Childlessness" ))+
>theme( plot.margin= unit(c(1,4,1,1), "cm"), legend.position="bottom", legend.direction= "vertical")

1. ggplot(dt, aes( Age, value, linetype= Variable, col=Variable))

linetype= Variable and col=Variable set in the aes tell ggplot to automatically divide the lines based on the number of Variable(s);

2. scale_color_manual sets the colors of the lines contained in values. I was not satisfied with what I got with scale_color_grey so I set my colors manually (_manual!);

3. since I want the legend at the bottom AND in two columns (or 3 rows) AND I have two features specified in the aes I need to add a guide=guide_legend(nrow=3) to each scale_blablabla_manual (that is to say scale_color_manual AND scale_linetype_manual);

4. In guide=guide_legend the byrow=F means that I do not want the legend to appear ordered by row, but rather by columns;

5. in theme( legend.position=”bottom”) tells ggplot to put the legend below the graph and legend.direction to plot it in a vertical way (which I divide in 3 rows)

Author: acarioli

is a researcher at the Geography and Environment department of the University of Southampton, WorldPop project team. She is also affiliated researcher at CED, UAB and Dondena Centre. Her interests include spatial econometrics and modeling, bayesian methods, machine learning processes, forecasting, micro-data simulation, and data visualization. Demo-traveler, Mac enthusiast, R zealot and Rladies member.