Bangladesh geofacet plot: Female population projections by upazilas

BGD_plot

Georgia Mapping in R

You can download session 9 files for constructing the population pyramids of Georgia here: https://github.com/rladies/meetup-presentations_tbilisi and specify your working directory with setwd(“/Users/mydomain/myfolder/”)

#set working directory
mypath<-"/Users/DrSpengler/The rectification of the Vuldrini/"
#upload shape files
georgia <- readOGR("./GEO_adm/","GEO_adm0")
## OGR data source with driver: ESRI Shapefile
## Source: "./GEO_adm/", layer: "GEO_adm0"
## with 1 features
## It has 70 fields
# plot(georgia, lwd=1.5)

georgia1 <- readOGR("./GEO_adm/","GEO_adm1")
## OGR data source with driver: ESRI Shapefile
## Source: "./GEO_adm/", layer: "GEO_adm1"
## with 12 features
## It has 16 fields
# plot(georgia1)

georgia2 <- readOGR("./GEO_adm/","GEO_adm2")
## OGR data source with driver: ESRI Shapefile
## Source: "./GEO_adm/", layer: "GEO_adm2"
## with 69 features
## It has 18 fields
# plot(georgia2)

gwat <- readOGR("./GEO_wat/" , "GEO_water_lines_dcw")
## OGR data source with driver: ESRI Shapefile
## Source: "./GEO_wat/", layer: "GEO_water_lines_dcw"
## with 559 features
## It has 5 fields
# plot(gwat)

gpop <- raster("./GEO_pop/geo_pop.grd")
# plot(gpop)

galt <- raster("./GEO_msk_alt/GEO_msk_alt.grd")
# plot(galt)
 plot(georgia, lwd=1.5) #n1

map1

 plot(georgia1, lwd=1.5) #n2

map2

 plot(georgia2, lwd=1.5) #n3

map3

 plot(georgia, lwd=1.5) #n4
 plot(gwat, lwd=1.5, col="blue", add=T) #n4

map4

 plot(gpop) #n5
 plot(georgia, lwd=1.5,  add=T) #n5

map5

 plot(galt, lwd=1.5) #n6

map6

Plot neighbouring countries

tur <- readOGR("./TUR_adm" , "TUR_adm0")
## OGR data source with driver: ESRI Shapefile
## Source: "./TUR_adm", layer: "TUR_adm0"
## with 1 features
## It has 70 fields
## Integer64 fields read as strings:  ID_0 OBJECTID_1
arm <- readOGR("./ARM_adm" , "ARM_adm0")
## OGR data source with driver: ESRI Shapefile
## Source: "./ARM_adm", layer: "ARM_adm0"
## with 1 features
## It has 70 fields
## Integer64 fields read as strings:  ID_0 OBJECTID_1
rus <- readOGR("./RUS_adm" , "RUS_adm0")
## OGR data source with driver: ESRI Shapefile
## Source: "./RUS_adm", layer: "RUS_adm0"
## with 1 features
## It has 70 fields
## Integer64 fields read as strings:  ID_0 OBJECTID_1
aze <- readOGR("./AZE_adm" , "AZE_adm0")
## OGR data source with driver: ESRI Shapefile
## Source: "./AZE_adm", layer: "AZE_adm0"
## with 1 features
## It has 70 fields
## Integer64 fields read as strings:  ID_0 OBJECTID_1

plot maps

plot(georgia, lwd=1.5, col="white", bg="lightblue")
plot(georgia1, add=T, lty=2)
plot(tur, add=T, col="white")
plot(arm, add=T, col="white")
plot(rus, add=T, col="white")
plot(aze, add=T, col="white")

map7

add labels for the countries

x.loc <- c(44.32002, 46.35746, 44.40421, 42.18156, 40.71662)
y.loc <- c(43.42472, 40.87209, 40.82228, 40.90945, 41.99276)
nb.lab <- c("Russia", "Azerbaijan", "Armenia", "Turkey", "Black Sea")
plot(georgia, lwd=1.5, col="white", bg="lightblue")
plot(georgia1, add=T, lty=2)
plot(tur, add=T, col="white")
plot(arm, add=T, col="white")
plot(rus, add=T, col="white")
plot(aze, add=T, col="white")
text(x.loc, y.loc, nb.lab)

let’s add everything (or almost everything) together

plot(gwat, col="blue")
# plot(georgia1[1,], lwd=1, col="lightblue", border="black", add=T)
plot(georgia2, lwd=0.5, border="black", lty=3, add=T)
plot(georgia1, border="black", lty=2, add=T)
plot(georgia, lwd=1.5, add=T)

map8

check georgia@data

head(georgia1)
##   ID_0 ISO  NAME_0 ID_1       NAME_1 VARNAME_1 NL_NAME_1 HASC_1 CC_1
## 0   81 GEO Georgia 1034     Abkhazia   Sokhumi      <NA>  GE.AB <NA>
## 1   81 GEO Georgia 1035       Ajaria    Batumi      <NA>  GE.AJ <NA>
## 2   81 GEO Georgia 1036        Guria  Ozurgeti      <NA>  GE.GU <NA>
## 3   81 GEO Georgia 1037      Imereti   Kutaisi      <NA>  GE.IM <NA>
## 4   81 GEO Georgia 1038      Kakheti    Telavi      <NA>  GE.KA <NA>
## 5   81 GEO Georgia 1039 Kvemo Kartli   Rustavi      <NA>  GE.KK <NA>
##                   TYPE_1           ENGTYPE_1 VALIDFR_1 VALIDTO_1 REMARKS_1
## 0 Avtonomiuri Respublika Autonomous Republic      1994   Present      <NA>
## 1 Avtonomiuri Respublika Autonomous Republic      1994   Present      <NA>
## 2                 Region              Region      1994   Present      <NA>
## 3                 Region              Region      1994   Present      <NA>
## 4                 Region              Region      1994   Present      <NA>
## 5                 Region              Region      1994   Present      <NA>
##   Shape_Leng Shape_Area
## 0   6.643211  0.9744622
## 1   3.055014  0.3074264
## 2   2.880653  0.2092665
## 3   4.214567  0.6783179
## 4   6.820519  1.2485036
## 5   5.219352  0.6807876

print labels on the map

labels for admin 2

coords2<- coordinates(georgia2[2:6,])
admin2 <- c(as.character(georgia2$NAME_2[1:5]))
admin2
## [1] "Gagra"      "Gali"       "Gudauta"    "Gulripshi"  "Ochamchire"

Upload data from World Bank

dt <- read.csv("/Users/ac1y15/Google Drive/blog/RLadies_Georgia_files/Session_3/Data_Extract_From_Subnational_Malnutrition/3f075abc-c51c-40c5-afb1-f8fbcfa30f23_Data.csv", header=T)
dt.1 <- subset(dt, dt$type==1&dt$select==1)

head(dt.1)
##            Admin.Region.Name select order
## 6                                 1     1
## 7  Georgia, Adjara Aut. Rep.      1     2
## 16            Georgia, Guria      1     3
## 26          Georgia, Imereti      1     4
## 31          Georgia, Kakheti      1     5
## 36     Georgia, Kvemo Kartli      1     6
##                         Admin.Region.Code type
## 6                                            1
## 7  GEO_Adjara_Aut._Rep._GE.AR_1297_GEO002    1
## 16            GEO_Guria_GE.GU_1298_GEO003    1
## 26          GEO_Imereti_GE.IM_1299_GEO004    1
## 31          GEO_Kakheti_GE.KA_1300_GEO005    1
## 36     GEO_Kvemo_Kartli_GE.KK_1301_GEO006    1
##                                                            Series.Name
## 6
## 7  Prevalence of overweight, weight for height (% of children under 5)
## 16 Prevalence of overweight, weight for height (% of children under 5)
## 26 Prevalence of overweight, weight for height (% of children under 5)
## 31 Prevalence of overweight, weight for height (% of children under 5)
## 36 Prevalence of overweight, weight for height (% of children under 5)
##          Series.Code YR2000 YR2005 YR2009
## 6                        NA     NA     NA
## 7  SN.SH.STA.OWGH.ZS     NA   28.1     NA
## 16 SN.SH.STA.OWGH.ZS     NA    7.9     NA
## 26 SN.SH.STA.OWGH.ZS    9.9   21.5     NA
## 31 SN.SH.STA.OWGH.ZS    7.0   19.6   13.2
## 36 SN.SH.STA.OWGH.ZS    9.5   28.2   19.1

Map the prevalence overweight w/h

library(classInt)
nclassint <- 3 #number of colors to be used in the palette
cat <- classIntervals(dt.1$YR2005, nclassint,style = "quantile") #style refers to how the breaks are created
colpal <- brewer.pal(nclassint,"Greens") #sequential
color.palette <- findColours(cat,colpal)
is.na(color.palette)
##  [1]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
## [12] FALSE
bins <- cat$brks
lb <- length(bins)

color.palette[c(1, 10)] <- "gray"
value.vec <- c(round(bins[-length(bins)],2))
value.vec.tail <- c(round(bins[-1],2))

Plot and SAVE map:

plot(georgia1, col=color.palette, border=T, main="Prevalence of overweight, \nweight for height (% of children under 5)")
legend("topright",fill=c("gray", "#E5F5E0", "#A1D99B", "#31A354"),legend=c("NA",paste(value.vec,":",value.vec.tail)),cex=1.1, bg="white", bty = "n")
# map.scale(41, 41, 2, "km", 2, 100)
map.scale(x=40.1, y=41.2, relwidth=0.1 , metric=T, ratio=F, cex=0.8)
SpatialPolygonsRescale(layout.north.arrow(2), offset= c(40.1, 41.6), scale = 0.5, plot.grid=F)

map12

Geofacet: Bangladesh 64 districts education

Geofacet example using World Bank data on Bangladesh education attainment

  1. set up grids
  2. upload data, source: World Bank
  3. plot and save

1. Grid for Bangladesh districts:

library(tidyverse)
library(geofacet)
library(ggthemes)
options(scipen = 99)
mygrid <- data.frame(
row = c(1, 2, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11),
col = c(3, 2, 3, 4, 3, 4, 5, 3, 4, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 9),
code = c("BG01","BG02","BG03","BG04","BG05","BG06","BG07","BG08","BG09","BG10","BG11","BG12","BG13","BG14","BG15","BG16","BG17","BG18","BG19","BG20","BG21","BG22","BG23","BG24","BG25","BG26","BG27","BG28","BG29","BG30","BG31","BG32","BG33","BG34","BG35","BG36","BG37","BG38","BG39","BG40","BG41","BG42","BG43","BG44","BG45","BG46","BG47","BG48","BG49","BG50","BG51","BG52","BG53","BG54","BG55","BG56","BG57","BG58","BG59","BG60","BG61","BG62","BG63", "BG64"),
name = c("Panchagar","Takurgaong","Nilphamar","Lamonirhat","Dinajpur","Rangpur","Kurigram","Jaipurat","Gaibandha","Naogaon","Bogra","Jamalpur","Sherpar","Mymensingh","Netrokona","Suramganj","Sylhet","Chapai","Rajshani","Nator","Sirajganj","Tangail","Gazipur","Kishoreganj","Habiganj","Moulvibazar","Kushtia","Pabna","Dhaka","Nardiaganj","Narsingdi","Brahmanbaria","Meherpur","Jhenaidah","Magura","Rajbari","Manikganj","Munshiganj","Comilla","Khagrachhari","Rangramati","Chuadanga","Jessore","Gopalganj","Faridpur","Madanipur","Shariyapur","Chandpur","Feni","Chittagong","Badanbari","Narail","Pirojpur","Barisal","Jhalkati","Laksimipur","Noakhali","Satkhira","Khulna","Bagerhat","Borguna","Patuakhali","Bhola","Cox's Bazar"),
stringsAsFactors = FALSE
)

Preview the grid:

geofacet::grid_preview(mygrid)

Screen Shot 2017-07-23 at 16.17.02.png

2. Data from World Bank

dt3<-structure(list(ordinal = c(58L, 58L, 58L, 58L, 58L, 58L, 58L, 34L, 56L, 57L, 34L, 56L, 57L, 34L, 56L, 57L, 34L, 56L, 57L, 34L, 56L, 57L, 34L, 56L, 57L, 34L, 56L, 57L, 53L, 55L, 59L, 53L, 55L, 59L, 53L, 55L, 59L, 53L, 55L, 59L, 53L, 55L, 59L, 53L, 55L, 59L, 53L, 55L, 59L, 47L, 54L, 47L, 54L, 47L, 54L, 47L, 54L, 47L, 54L, 47L, 54L, 47L, 54L, 22L, 27L, 30L, 33L, 45L, 48L, 63L, 64L, 22L, 27L, 30L, 33L, 45L, 48L, 63L, 64L, 22L, 27L, 30L, 33L, 45L, 48L, 63L, 64L, 22L, 27L, 30L, 33L, 45L, 48L, 63L, 64L, 22L, 27L, 30L, 33L, 45L, 48L, 63L, 64L, 22L, 27L, 30L, 33L, 45L, 48L, 63L, 64L, 22L, 27L, 30L, 33L, 45L, 48L, 63L, 64L, 20L, 23L, 46L, 49L, 51L, 52L, 60L, 61L, 62L, 20L, 23L, 46L, 49L, 51L, 52L, 60L, 61L, 62L, 20L, 23L, 46L, 49L, 51L, 52L, 60L, 61L, 62L, 20L, 23L, 46L, 49L, 51L, 52L, 60L, 61L, 62L, 20L, 23L, 46L, 49L, 51L, 52L, 60L, 61L, 62L, 20L, 23L, 46L, 49L, 51L, 52L, 60L, 61L, 62L, 20L, 23L, 46L, 49L, 51L, 52L, 60L, 61L, 62L, 8L, 18L, 28L, 29L, 40L, 50L, 8L, 18L, 28L, 29L, 40L, 50L, 8L, 18L, 28L, 29L, 40, 50L, 8L, 18L, 28L, 29L, 40L, 50L, 8L, 18L, 28L, 29L, 40L, 50L, 8L, 18L, 28L, 29L, 40L, 50L, 8L, 18L, 28L, 29L, 40L, 50L, 11L, 25L, 26L, 31L, 38L, 41L, 42L, 11L, 25L, 26L, 31L, 38L, 41L, 42L, 11L, 25L, 26L, 31L, 38L, 41L, 42L, 11L, 25L, 26L, 31L, 38L, 41L, 42L, 11L, 25L, 26L, 31L, 38L, 41L, 42L, 11L, 25L, 26L, 31L, 38L, 41L, 42L, 11L, 25L, 26L, 31L, 38L, 41L, 42L, 9L, 13L, 14L, 17L, 19L, 21L, 24L, 32L, 36L, 37L, 9L, 13L, 14L, 17L, 19L, 21L, 24L, 32L, 36L, 37L, 9L, 13L, 14L, 17L, 19L, 21L, 24L, 32L, 36L, 37L, 9L, 13L, 14L, 17L, 19L, 21L, 24L, 32L, 36L, 37L, 9L, 13L, 14L, 17L, 19L, 21L, 24L, 32L, 36L, 37L, 9L, 13L, 14L, 17L, 19L, 21L, 24L, 32L, 36L, 37L, 9L, 13L, 14L, 17L, 19L, 21L, 24L, 32L, 36L, 37L, 2L, 4L,6L, 7L, 10L, 15L, 16L, 43L, 2L, 4L, 6L, 7L, 10L, 15L, 16L, 43L, 2L, 4L, 6L, 7L, 10L, 15L, 16L, 43L, 2L, 4L, 6L, 7L, 10L, 15L, 16L, 43L, 2L, 4L, 6L, 7L, 10L, 15L, 16L, 43L, 2L, 4L, 6L, 7L, 10L, 15L, 16L, 43L, 2L, 4L, 6L, 7L, 10L, 15L, 16L, 43L, 1L, 3L, 5L, 12L, 35L, 39L, 44L, 1L, 3L, 5L, 12L, 35L, 39L, 44L, 1L, 3L,
5L, 12L, 35L, 39L, 44L, 1L, 3L, 5L, 12L, 35L, 39L, 44L, 1L, 3L, 5L, 12L, 35L, 39L, 44L, 1L, 3L, 5L, 12L, 35L, 39L, 44L, 1L, 3L, 5L, 12L, 35L, 39L, 44L), Division.Name = structure(c(6L, 6L, 6L, 6L, 6L, 6L, 6L, 3L, 6L, 6L, 3L, 6L, 6L, 3L, 6L, 6L, 3L, 6L, 6L, 3L, 6L, 6L, 3L, 6L, 6L, 3L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 5L, 6L, 5L, 6L, 5L, 6L, 5L, 6L, 5L, 6L, 5L, 6L, 5L, 6L, 3L, 3L, 3L, 3L, 5L, 5L, 7L, 7L, 3L, 3L, 3L, 3L, 5L, 5L, 7L, 7L, 3L, 3L, 3L, 3L, 5L, 5L, 7L, 7L, 3L, 3L, 3L, 3L, 5L, 5L, 7L, 7L, 3L, 3L, 3L, 3L, 5L, 5L, 7L, 7L, 3L, 3L, 3L, 3L, 5L, 5L, 7L, 7L, 3L, 3L, 3L, 3L, 5L, 5L, 7L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 6L, 7L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 6L, 7L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 6L, 7L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 6L, 7L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 6L, 7L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 6L, 7L, 7L, 3L, 3L, 5L, 5L, 5L, 5L, 6L, 7L, 7L, 2L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 5L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 4L, 1L, 1L, 1L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 4L, 4L, 4L), .Label = c("BARISAL", "CHITTAGONG", "DHAKA", "KHULNA", "RAJSHAHI", "RANGPUR", "SYLHET"
), class = "factor"), Zila.Name = structure(c(50L, 50L, 50L, 50L, 50L, 50L, 50L, 63L, 33L, 47L, 63L, 33L, 47L, 63L, 33L, 47L, 63L, 33L, 47L, 63L, 33L, 47L, 63L, 33L, 47L, 63L, 33L, 47L, 15L, 30L, 56L, 15L, 30L, 56L, 15L, 30L, 56L, 15L, 30L, 56L, 15L, 30L, 56L, 15L, 30L, 56L, 15L, 30L, 56L, 26L, 18L, 26L, 18L, 26L, 18L,
26L, 18L, 26L, 18L, 26L, 18L, 26L, 18L, 22L, 40L, 46L, 59L, 6L, 41L, 61L, 62L, 22L, 40L, 46L, 59L, 6L, 41L, 61L, 62L, 22L, 40L, 46L, 59L, 6L, 41L, 61L, 62L, 22L, 40L, 46L, 59L, 6L, 41L, 61L, 62L, 22L, 40L, 46L, 59L, 6L, 41L, 61L, 62L, 22L, 40L, 46L, 59L, 6L, 41L, 61L, 62L, 22L, 40L, 46L, 59L, 6L, 41L, 61L, 62L, 19L, 29L, 9L, 45L, 54L, 60L, 64L, 21L, 37L, 19L, 29L, 9L, 45L, 54L, 60L, 64L, 21L, 37L, 19L, 29L, 9L, 45L, 54L, 60L, 64L, 21L, 37L, 19L, 29L, 9L, 45L, 54L, 60L, 64L, 21L, 37L, 19L, 29L, 9L, 45L, 54L, 60L, 64L, 21L, 37L, 19L, 29L, 9L, 45L, 54L, 60L, 64L, 21L, 37L, 19L, 29L, 9L, 45L, 54L, 60L, 64L, 21L, 37L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 12L, 36L, 39L, 53L, 25L, 35L, 38L, 12L, 36L, 39L, 53L, 25L, 35L, 38L, 12L, 36L, 39L, 53L, 25L, 35L, 38L, 12L, 36L, 39L, 53L, 25L, 35L, 38L, 12L, 36L, 39L, 53L, 25L, 35L, 38L, 12L, 36L, 39L, 53L,
25L, 35L, 38L, 12L, 36L, 39L, 53L, 25L, 35L, 38L, 8L, 17L, 27L, 55L, 16L, 20L, 34L, 58L, 11L, 23L, 8L, 17L, 27L, 55L, 16L, 20L, 34L, 58L, 11L, 23L, 8L, 17L, 27L, 55L, 16L, 20L, 34L, 58L, 11L, 23L, 8L, 17L, 27L, 55L, 16L, 20L, 34L, 58L, 11L, 23L, 8L, 17L, 27L, 55L, 16L, 20L, 34L, 58L, 11L, 23L, 8L, 17L, 27L, 55L, 16L, 20L, 34L, 58L, 11L, 23L, 8L, 17L, 27L, 55L, 16L, 20L, 34L, 58L, 11L, 23L, 4L, 24L, 52L, 2L, 10L, 32L, 48L, 42L, 4L, 24L, 52L, 2L, 10L, 32L, 48L, 42L, 4L, 24L, 52L, 2L, 10L, 32L, 48L, 42L, 4L, 24L, 52L, 2L, 10L, 32L, 48L, 42L, 4L, 24L, 52L, 2L, 10L, 32L, 48L, 42L, 4L, 24L, 52L, 2L, 10L, 32L, 48L, 42L, 4L, 24L, 52L, 2L, 10L, 32L, 48L, 42L, 3L, 5L, 51L, 13L, 1L, 28L, 57L, 3L, 5L, 51L, 13L, 1L, 28L, 57L, 3L, 5L, 51L, 13L, 1L, 28L, 57L, 3L, 5L, 51L, 13L, 1L, 28L, 57L, 3L, 5L, 51L, 13L, 1L, 28L, 57L, 3L, 5L, 51L, 13L, 1L, 28L, 57L, 3L, 5L, 51L, 13L, 1L, 28L, 57L), .Label = c("BAGERHAT", "BANDARBAN", "BARGUNA", "BARISAL",
"BHOLA", "BOGRA", "BRAHMANBARIA", "CHANDPUR", "CHAPAI NABABGANJ", "CHITTAGONG", "CHUADANGA", "COMILLA", "COX'S BAZAR", "DHAKA", "DINAJPUR", "FARIDPUR", "FENI", "GAIBANDHA", "GAZIPUR", "GOPALGANJ", "HABIGANJ", "JAMALPUR", "JESSORE", "JHALOKATI", "JHENAIDAH", "JOYPURHAT", "KHAGRACHHARI", "KHULNA", "KISHOREGANJ", "KURIGRAM", "KUSHTIA", "LAKSHMIPUR", "LALMONIRHAT", "MADARIPUR", "MAGURA",
"MANIKGANJ", "MAULVIBAZAR", "MEHERPUR", "MUNSHIGANJ", "MYMENSINGH", "NAOGAON", "NARAIL", "NARAYANGANJ", "NARSINGDI", "NATORE", "NETRAKONA", "NILPHAMARI", "NOAKHALI", "PABNA", "PANCHAGARH", "PATUAKHALI", "PIROJPUR", "RAJBARI", "RAJSHAHI", "RANGAMATI", "RANGPUR", "SATKHIRA", "SHARIATPUR", "SHERPUR", "SIRAJGANJ", "SUNAMGANJ", "SYLHET", "TANGAIL", "THAKURGAON"), class = "factor"), name = structure(c(50L, 50L, 50L, 50L, 50L, 50L, 50L, 64L, 33L, 47L, 64L, 33L, 47L, 64L, 33L, 47L, 64L, 33L, 47L, 64L, 33L, 47L, 64L, 33L, 47L, 64L, 33L,
47L, 15L, 30L, 55L, 15L, 30L, 55L, 15L, 30L, 55L, 15L, 30L, 55L, 15L, 30L, 55L, 15L, 30L, 55L, 15L, 30L, 55L, 22L, 18L, 22L, 18L, 22L, 18L, 22L, 18L, 22L, 18L, 22L, 18L, 22L, 18L, 23L, 40L, 46L, 59L, 5L, 41L, 61L, 62L, 23L, 40L, 46L, 59L, 5L, 41L, 61L, 62L, 23L, 40L, 46L, 59L, 5L, 41L, 61L, 62L, 23L, 40L, 46L, 59L, 5L, 41L, 61L, 62L, 23L, 40L, 46L, 59L, 5L, 41L, 61L, 62L, 23L, 40L, 46L, 59L, 5L, 41L, 61L, 62L, 23L, 40L, 46L, 59L, 5L, 41L, 61L, 62L, 19L, 29L, 9L, 45L, 54L, 60L, 63L, 21L, 38L, 19L, 29L, 9L, 45L, 54L, 60L, 63L, 21L, 38L, 19L, 29L, 9L, 45L, 54L, 60L, 63L, 21L, 38L, 19L, 29L, 9L, 45L, 54L, 60L, 63L, 21L, 38L, 19L, 29L, 9L, 45L, 54L, 60L, 63L, 21L, 38L, 19L, 29L, 9L, 45L, 54L, 60L,
63L, 21L, 38L, 19L, 29L, 9L, 45L, 54L, 60L, 63L, 21L, 38L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 7L, 14L, 43L, 44L, 31L, 49L, 12L, 36L, 39L, 53L, 26L, 35L, 37L, 12L, 36L, 39L, 53L, 26L, 35L, 37L, 12L, 36L, 39L, 53L, 26L, 35L, 37L, 12L, 36L, 39L, 53L, 26L, 35L, 37L, 12L, 36L, 39L, 53L, 26L, 35L, 37L, 12L, 36L, 39L, 53L, 26L, 35L, 37L, 12L, 36L, 39L, 53L, 26L, 35L, 37L, 8L, 17L, 27L, 56L, 16L, 20L, 34L, 58L, 11L, 24L, 8L, 17L, 27L, 56L, 16L, 20L, 34L, 58L, 11L, 24L, 8L, 17L, 27L, 56L, 16L, 20L, 34L, 58L, 11L, 24L, 8L, 17L, 27L, 56L, 16L, 20L, 34L, 58L, 11L, 24L,
8L, 17L, 27L, 56L, 16L, 20L, 34L, 58L, 11L, 24L, 8L, 17L, 27L, 56L, 16L, 20L, 34L, 58L, 11L, 24L, 8L, 17L, 27L, 56L, 16L, 20L, 34L, 58L, 11L, 24L, 3L, 25L, 52L, 1L, 10L, 32L, 48L, 42L, 3L, 25L, 52L, 1L, 10L, 32L, 48L, 42L, 3L, 25L, 52L, 1L, 10L, 32L, 48L, 42L, 3L, 25L, 52L, 1L, 10L, 32L, 48L, 42L, 3L, 25L, 52L,
1L, 10L, 32L, 48L, 42L, 3L, 25L, 52L, 1L, 10L, 32L, 48L, 42L, 3L, 25L, 52L, 1L, 10L, 32L, 48L, 42L, 6L, 4L, 51L, 13L, 2L, 28L, 57L, 6L, 4L, 51L, 13L, 2L, 28L, 57L, 6L, 4L, 51L, 13L, 2L, 28L, 57L, 6L, 4L, 51L, 13L, 2L, 28L, 57L, 6L, 4L, 51L, 13L, 2L, 28L, 57L, 6L, 4L, 51L, 13L, 2L, 28L, 57L, 6L, 4L, 51L, 13L, 2L, 28L, 57L), .Label = c("Badanbari", "Bagerhat", "Barisal", "Bhola", "Bogra", "Borguna", "Brahmanbaria", "Chandpur", "Chapai", "Chittagong", "Chuadanga", "Comilla", "Cox's Bazar", "Dhaka", "Dinajpur", "Faridpur", "Feni", "Gaibandha", "Gazipur", "Gopalganj", "Habiganj", "Jaipurat", "Jamalpur", "Jessore", "Jhalkati", "Jhenaidah", "Khagrachhari", "Khulna", "Kishoreganj", "Kurigram", "Kushtia", "Laksimipur", "Lamonirhat", "Madanipur", "Magura", "Manikganj", "Meherpur", "Moulvibazar", "Munshiganj", "Mymensingh", "Naogaon", "Narail",
"Nardiaganj", "Narsingdi", "Nator", "Netrokona", "Nilphamar", "Noakhali", "Pabna", "Panchagar", "Patuakhali", "Pirojpur", "Rajbari", "Rajshani", "Rangpur", "Rangramati", "Satkhira", "Shariyapur", "Sherpar", "Sirajganj", "Suramganj", "Sylhet", "Takurgaong", "Tangail"), class = "factor"), row = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L, 11L), col = c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 4L, 3L, 2L, 4L, 3L, 2L, 4L, 3L, 2L, 4L, 3L, 2L, 4L, 3L, 2L, 4L, 3L, 2L, 4L, 3L, 3L, 5L, 4L, 3L, 5L, 4L, 3L, 5L, 4L, 3L, 5L, 4L, 3L, 5L, 4L, 3L, 5L, 4L, 3L, 5L, 4L, 3L, 4L, 3L, 4L, 3L, 4L, 3L, 4L, 3L, 4L, 3L, 4L, 3L, 4L, 4L, 6L, 7L, 5L, 3L, 2L, 8L, 9L, 4L, 6L, 7L, 5L, 3L, 2L, 8L, 9L, 4L, 6L, 7L, 5L, 3L, 2L, 8L, 9L, 4L, 6L, 7L, 5L, 3L, 2L, 8L, 9L, 4L, 6L, 7L, 5L, 3L, 2L, 8L, 9L, 4L, 6L, 7L, 5L, 3L, 2L, 8L, 9L, 4L, 6L, 7L, 5L, 3L, 2L, 8L, 9L, 6L, 7L, 1L, 3L,
2L, 4L, 5L, 8L, 9L, 6L, 7L, 1L, 3L, 2L, 4L, 5L, 8L, 9L, 6L, 7L, 1L, 3L, 2L, 4L, 5L, 8L, 9L, 6L, 7L, 1L, 3L, 2L, 4L, 5L, 8L, 9L, 6L, 7L, 1L, 3L, 2L, 4L, 5L, 8L, 9L, 6L, 7L, 1L, 3L, 2L, 4L, 5L, 8L, 9L, 6L, 7L, 1L, 3L, 2L, 4L, 5L, 8L, 9L, 7L, 4L, 5L, 6L, 2L, 3L, 7L, 4L, 5L, 6L, 2L, 3L, 7L, 4L, 5L, 6L, 2L, 3L, 7L, 4L, 5L,
6L, 2L, 3L, 7L, 4L, 5L, 6L, 2L, 3L, 7L, 4L, 5L, 6L, 2L, 3L, 7L, 4L, 5L, 6L, 2L, 3L, 7L, 5L, 6L, 4L, 2L, 3L, 1L, 7L, 5L, 6L, 4L, 2L, 3L, 1L, 7L, 5L, 6L, 4L, 2L, 3L, 1L, 7L, 5L, 6L, 4L, 2L, 3L, 1L, 7L, 5L, 6L, 4L, 2L, 3L, 1L, 7L, 5L, 6L, 4L, 2L, 3L, 1L, 7L, 5L, 6L, 4L, 2L, 3L, 1L, 7L, 8L, 9L, 10L, 4L, 3L, 5L, 6L, 1L, 2L, 7L, 8L, 9L, 10L, 4L, 3L, 5L, 6L, 1L, 2L, 7L, 8L, 9L, 10L, 4L, 3L, 5L, 6L, 1L, 2L, 7L, 8L, 9L, 10L, 4L, 3L, 5L, 6L, 1L, 2L, 7L, 8L, 9L, 10L, 4L, 3L, 5L, 6L, 1L, 2L, 7L, 8L, 9L, 10L, 4L, 3L, 5L, 6L, 1L, 2L, 7L, 8L, 9L, 10L, 4L, 3L, 5L, 6L, 1L, 2L, 4L, 5L, 3L, 10L, 9L, 6L, 7L, 2L, 4L, 5L, 3L, 10L, 9L, 6L, 7L, 2L, 4L, 5L, 3L, 10L, 9L, 6L, 7L, 2L, 4L, 5L, 3L, 10L, 9L, 6L, 7L, 2L, 4L, 5L, 3L, 10L, 9L, 6L, 7L, 2L, 4L, 5L, 3L, 10L, 9L, 6L, 7L, 2L, 4L, 5L, 3L, 10L, 9L, 6L, 7L, 2L, 5L, 7L, 6L, 9L, 4L, 3L, 2L, 5L, 7L, 6L, 9L, 4L, 3L, 2L, 5L, 7L, 6L, 9L, 4L, 3L, 2L, 5L, 7L, 6L, 9L, 4L, 3L, 2L, 5L, 7L, 6L, 9L, 4L, 3L, 2L, 5L, 7L, 6L, 9L, 4L, 3L, 2L, 5L, 7L, 6L, 9L, 4L, 3L, 2L), code = structure(c(12L, 12L, 12L, 12L, 12L, 12L, 12L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 1L, 3L, 2L, 4L, 6L, 5L, 4L, 6L, 5L, 4L, 6L, 5L, 4L, 6L, 5L, 4L, 6L, 5L, 4L, 6L, 5L, 4L, 6L, 5L, 7L, 13L, 7L, 13L, 7L, 13L, 7L, 13L, 7L, 13L, 7L, 13L, 7L, 13L, 10L, 15L, 16L, 14L, 9L, 8L, 11L, 17L, 10L, 15L, 16L, 14L, 9L, 8L, 11L, 17L, 10L, 15L, 16L, 14L, 9L, 8L, 11L, 17L, 10L, 15L, 16L, 14L, 9L, 8L, 11L, 17L, 10L, 15L, 16L, 14L, 9L, 8L, 11L, 17L, 10L, 15L, 16L, 14L, 9L, 8L, 11L, 17L, 10L, 15L, 16L, 14L, 9L, 8L, 11L, 17L, 23L, 24L, 18L, 20L, 19L, 21L,22L,25L,26L,23L,24L,18L,20L,19L,21L,22L,25L,26L,23L,24L,
18L,20L,19L,21L,22L,25L,26L,23L,24L,18L,20L,19L,21L, 22L,25L,26L,23L, 24L, 18L, 20L, 19L, 21L, 22L, 25L, 26L, 23L, 24L, 18L, 20L, 19L, 21L, 22L, 25L, 26L, 23L, 24L, 18L, 20L, 19L, 21L, 22L, 25L, 26L, 32L, 29L, 30L, 31L, 27L, 28L, 32L, 29L, 30L, 31L, 27L, 28L, 32L, 29L, 30L, 31L, 27L, 28L, 32L, 29L, 30L, 31L, 27L, 28L, 32L, 29L, 30L, 31L, 27L, 28L, 32L, 29L, 30L, 31L, 27L, 28L, 32L, 29L, 30L, 31L, 27L, 28L, 39L, 37L, 38L, 36L, 34L, 35L, 33L, 39L, 37L, 38L, 36L, 34L, 35L, 33L, 39L, 37L, 38L, 36L, 34L, 35L, 33L, 39L, 37L, 38L, 36L, 34L, 35L, 33L, 39L, 37L, 38L, 36L, 34L, 35L, 33L, 39L, 37L, 38L, 36L, 34L, 35L, 33L, 39L, 37L, 38L, 36L, 34L, 35L, 33L, 48L, 49L, 40L, 41L, 45L, 44L, 46L, 47L, 42L, 43L, 48L, 49L, 40L, 41L, 45L, 44L, 46L, 47L, 42L, 43L, 48L, 49L, 40L, 41L, 45L, 44L, 46L, 47L, 42L, 43L, 48L, 49L, 40L, 41L, 45L, 44L, 46L, 47L, 42L, 43L, 48L, 49L, 40L, 41L, 45L, 44L, 46L, 47L, 42L, 43L, 48L, 49L, 40L, 41L, 45L, 44L, 46L, 47L, 42L, 43L, 48L,
49L, 40L, 41L, 45L, 44L, 46L, 47L, 42L, 43L, 54L, 55L, 53L, 51L, 50L, 56L, 57L, 52L, 54L, 55L, 53L, 51L, 50L, 56L, 57L, 52L, 54L, 55L, 53L, 51L, 50L, 56L, 57L, 52L, 54L, 55L, 53L, 51L, 50L, 56L, 57L, 52L, 54L, 55L, 53L, 51L, 50L, 56L, 57L, 52L, 54L, 55L, 53L, 51L, 50L, 56L, 57L, 52L, 54L, 55L, 53L, 51L, 50L, 56L, 57L, 52L, 61L, 63L, 62L, 64L, 60L, 59L, 58L, 61L, 63L, 62L, 64L, 60L, 59L, 58L, 61L, 63L, 62L, 64L, 60L, 59L, 58L, 61L, 63L, 62L, 64L, 60L, 59L, 58L, 61L, 63L, 62L, 64L, 60L, 59L, 58L, 61L, 63L, 62L, 64L, 60L, 59L, 58L, 61L, 63L, 62L, 64L, 60L, 59L, 58L), .Label = c(" BG02", " BG03", " BG04", " BG05", " BG06", " BG07", " BG08", " BG10", " BG11", " BG12", " BG16", "BG01", "BG09", "BG13", "BG14", "BG15", "BG17", "BG18", "BG19", "BG20", "BG21", "BG22", "BG23", "BG24", "BG25", "BG26", "BG27", "BG28", "BG29", "BG30", "BG31", "BG32", "BG33", "BG34", "BG35", "BG36", "BG37", "BG38", "BG39", "BG40", "BG41", "BG42", "BG43", "BG44", "BG45", "BG46", "BG47", "BG48", "BG49", "BG50", "BG51", "BG52", "BG53", "BG54", "BG55", "BG56", "BG57", "BG58", "BG59", "BG60", "BG61", "BG62", "BG63", "BG64"), class = "factor"),
type = structure(c(1L, 2L, 3L, 4L, 1L, 3L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 1L, 3L, 3L, 3L, 4L, 4L, 4L, 1L, 1L, 2L, 2L,
3L, 3L, 4L, 4L, 1L, 1L, 3L, 3L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 3L,
3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("lessthanPrimary", "Primary", "Secondary", "University"), class = "factor"), mean = c(0L, 0L, 0L, 0L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L),
    value = c(53.9, 33.2, 10.3, 2.7, 50.3, 12.8, 3.8, 57.2, 59.5, 61.3, 29.1, 29, 26.1, 11, 9.3, 10.1, 2.6, 2.3, 2.5, 50.3,50.3, 50.3, 12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 50.4, 63.5,     56.7, 33.1, 24.8, 27.4, 13.1, 9.4, 12.3, 3.4, 2.3, 3.6, 50.3,     50.3, 50.3, 12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 50, 62.9, 34.2,     23.9, 12.7, 10.7, 3.1, 2.5, 50.3, 50.3, 12.8, 12.8, 3.8,     3.8, 67.4, 58.1, 64.2, 66.9, 53.8, 53.7, 68.7, 50.5, 21.3,     29.1, 26.2, 23, 30.1, 33.9, 25, 34.6, 9.1, 10.2, 7.7, 8.3,     13, 10.1, 5.2, 11.7, 2.3, 2.6, 1.9, 1.8, 3.1, 2.3, 1.1, 3.2, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 12.8, 12.8,     12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 35.4, 62.1, 59.7, 54.4, 48.4, 60.9, 55, 61.6, 53.9, 43.3, 28.1, 29.2, 32, 33, 27.2, 30.4, 30.2, 35.6, 17.5, 8.1, 8.7, 10.7, 13.5, 9.7, 11.3, 6.9, 8.7, 3.8, 1.8, 2.3, 2.8, 5.1, 2.2, 3.2, 1.3, 1.8, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 12.8, 12.8, 12.8, 12.8, 12.8, 12.8,     12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8,     3.8, 56.8, 28.8, 42.7, 51.7, 57, 56.7, 32.1, 34.8, 39.1,     34.6, 28.6, 29.1, 9.4, 23.3, 14.8, 11.3, 11.5, 11.3, 1.7,     13.1, 3.5, 2.4, 2.9, 2.8, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3,     12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 47.3, 56.1, 49, 56.7, 54.3, 53, 59.8, 36.1, 31.8, 38.4,     31, 33.1, 33.3, 29.9, 13.9, 10, 10.8, 10, 10.1, 11.2, 8.2,     2.7, 2.1, 1.8, 2.4, 2.5, 2.6, 2, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 44.7, 38.8, 59.3, 57, 54.5, 46.4, 56, 58.9, 55, 46.5, 40.1, 41.1, 29.5, 29, 32.8, 40, 32.6, 32.3, 34.3, 36.5, 12.9, 17, 9.3, 11.5, 10, 11, 9.2, 7.3, 8.9, 13.4, 2.3, 3.1, 1.9, 2.5, 2.6, 2.6, 2.1, 1.5, 1.8, 3.5, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 12.8,  12.8, 12.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 39.8, 33.8, 36.6, 70, 38.9, 52.9, 47.6, 49.4, 41.2, 46, 45.9, 20.9, 36.3, 34.8, 38.2, 36.8, 15.2, 17.1, 14.4, 7.6, 19.1, 10.4, 12, 11.3, 3.8, 3.1, 3, 1.5, 5.8, 2, 2.2, 2.5, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 12.8,  12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 43.6, 60.6, 48.1, 62.3, 42.8, 41.1, 51.3, 42.9, 28.6, 37.8, 27.1, 41.4, 36.7, 35.1, 11.1, 8.8, 11.7, 8.6, 12.8, 16.8, 10.9, 2.3, 2.1, 2.4, 2, 3, 5.4, 2.7, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 50.3, 12.8, 12.8, 12.8,    12.8, 12.8, 12.8, 12.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8, 3.8    )), .Names = c("ordinal", "Division.Name", "Zila.Name", "name", "row", "col", "code", "type", "mean", "value"), class = "data.frame", row.names = c(NA, -448L))

3. Plot and save:

library(ggplot2)
p <- ggplot(dt3 , aes(type, value, fill=type))+
geom_col(position = position_dodge())+
scale_fill_manual(values = c("#7fc97f", "#beaed4","#fdc086","#ffff99"))+
themebw()+
theme(axis.title.x=element_blank(),
axis.text.x=element_blank(),
axis.ticks.x=element_blank()),
plot.title=element_text(size=20, face="bold"))+
facet_geo(~name, grid = mygrid) +
labs(title = "Educational attainment in Bangladesh", fill="Edu attainment%",
caption = "By Aledemogr    Source: World Bank"
)
# ggsave("bgd1.png",height = 17, width = 10)</code>

 

bgd1

Geofacet: Nepal 75 districts

Screen Shot 2017-07-20 at 16.07.30row,col,code,name
1,4, NP01, Humla
1,5, NP02, Mugu
1,6, NP03, Dolpa
1,7, NP04, Mustang
1,8, NP05, Manang
2,9, NP06, Gorkha
2,1, NP07, Dharchula
2,2, NP08, Bajhang
2,3, NP09, Bajura
2,4, NP10, Kalikot
2,5, NP11, Jumla
2,6, NP12, Rukum
2,7, NP13, Myagdi
2,8, NP14, Kaski
2,10, NP15, Dhading
2,11, NP16, Rasuwa
2,12, NP17, Sindhupalchowk
2,13, NP18, Dolakha
2,14, NP19, Solukhumbu
2,15, NP20, Sankhuwasabha
2,16, NP21, Taplejung
3,9, NP22, Lamjung
3,1, NP23, Baitadi
3,2, NP24, Doti
3,3, NP25, Achham
3,4, NP26, Dailekh
3,5, NP27, Jajarkot
3,6, NP28, Rolpa
3,7, NP29, Baglung
3,8, NP30, Parbat
3,10, NP31, Nuwakot
3,11, NP32, Kavrepalanchok
3,12, NP33, Kathmandu
3,13, NP34, Okhaldhunga
3,14, NP35, Khotang
3,15, NP36, Bhojpur
3,16, NP37, Dhankuta
3,17, NP38, Tehrathum
4,9, NP39, Tanahun
4,1, NP40, Kanchanpur
4,2, NP41, Dadeldhura
4,3, NP42, Kailali
4,4, NP43, Surkhet
4,5, NP44, Salyan
4,6, NP45, Pyuthan
4,7, NP46, Gulmi
4,8, NP47, Syangja
4,10, NP48, Chitwan
4,11, NP49, Patan
4,12, NP50, Bhaktapur
4,13, NP51, Ramechhap
4,14, NP52, Udayapur
4,15, NP53, Sunsari
4,16, NP54, Panchthar
4,17, NP55, Ilam
5,9, NP56, Nawalparasi
5,4, NP57, Bardiya
5,5, NP58, Banke
5,6, NP59, Dang
5,7, NP60, Argakhanchi
5,8, NP61, Palpa
5,10, NP62, Parsa
5,11, NP63, Makwanpur
5,12, NP64, Sindhuli
5,13, NP65, Dhanussa
5,14, NP66, Siraha
5,15, NP67, Saptari
5,16, NP68, Morang
5,17, NP69, Jhapa
6,7, NP70, Kapilvastu
6,8, NP71, Rupandehi
6,10, NP72, Bara
6,11, NP73, Rahuttahat
6,12, NP74, Sarlahi
6,13, NP75, Mahottari

Geofacet grids: Nigeria Federal States

Geofacet grid for Nigeria’s 37 Federal States (below):

Screen Shot 2017-07-20 at 12.31.24.png

row,col,code,name
1,4,NG.KT,Katsina
1,5, NG.KN, Kano
1,2,NG.SO,Sokoto
1,3, NG.ZA, Zamfara
1,6, NG.JI, Jigawa
1,7, NG.YO, Yobe
2,2, NG.KE, Kebbi
2,3, NG.NI, Niger
2,4, NG.KD, Kaduna
2,7, NG.BO, Borno
2,6, NG.GO, Gombe
2,5, NG.BA, Bauchi
3,1, NG.OY, Oyo
3,2, NG.KW, Kwara
3,3,NG.FC, Abuja FCT
3,4, NG.NA, Nassarawa
3,6, NG.AD, Adamawa
3,5, NG.PL, Plateau
4,3, NG.EK, Ekiti
4,1, NG.OG, Ogun
4,2, NG.OS, Osun
4,4, NG.KO, Kogi
4,6, NG.TA, Taraba
4,5, NG.BE, Benue
5,3,NG.ED, Edo
5,1, NG.LA, Lagos
5,2, NG.ON, Ondo
5,6,NG.EB, Ebonyi
5,4, NG.AN, Anambra
5,5, NG.EN, Enugu
6,2, NG.DE, Delta
6,3, NG.IM, Imo
6,4,NG.AB, Abia
6,5, NG.CR, Cross River
7,3, NG.BY, Bayelsa
7,4, NG.RI, Rivers
7,5, NG.AK, Akwa Ibom

A nice example of hafen/geofacet from Washington Post to ggplot2

I’ve recently came across the hafen/geofacet function and was pondering to blog an example. Then, I came across a perfect example, thanks to  kanishkamisra for working on the dataset & code and making it available via github here!

 

usa_vs_state1

BAR CHART: a ggplot balance plot (2)

Merchandise trade balance plot in ggplot2

BAR CHART+LINE

Graph 2: Merchandise trade balance

You can find the data for this plot here or alternatively here is the dput data for balance:

structure(list(variable = structure(c(1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "Merchandize Trade Balance", class = "factor"),
type = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L), .Label = "Balance", class = "factor"), year = c(2013L,
2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L, 2013L,
2013L, 2013L, 2013L), value = c(-0.5, -1.5, -0.1, -0.4, -0.2,
0, 0.1, -0.1, -0.6, -0.2, -0.2, -1.3, 0), geo = structure(c(2L,
4L, 7L, 9L, 1L, 6L, 12L, 5L, 3L, 11L, 10L, 13L, 8L), .Label = c("CIS",
"Dev. Asia Pacific", "Eastern Asia", "Europe", "Latin Am. And Carr.",
"North Africa", "North America", "Oceania", "South Eastern Europe",
"South-Eastern Asia", "Southern Asia", "Sub-Saharan Africa",
"Western Asia"), class = "factor")), .Names = c("variable",
"type", "year", "value", "geo"), class = "data.frame", row.names = c(NA,
-13L))
library(dplyr) #to manipulate the dataset
library(ggplot2) #plotting
mer.bal <- mydt %>%
filter(variable == "Merchandize Trade Balance")

base <- mer.bal %>%
filter(type != "Balance") %>%
mutate(
value = ifelse(type == "Exports", value, -value)
)
balance <- mer.bal %>%
filter(type == "Balance")

ggplot(balance, aes(x = geo, y = value, fill=factor(type))) +
geom_bar(data = base %>%
filter(type=="Exports"), aes(col=type), stat = "identity") +
geom_bar(data = base %>%
filter(type=="Imports"), aes(col=type), stat = "identity") +
geom_bar(data = balance, aes(col=type), stat = "identity", width=.2) +
ggtitle(expression(atop("Merchandise trade balance", atop(italic("(Bln US$ by MDG Regions in 2013)"), "")))) +
theme_bw()+
theme(axis.text.x = element_text(size=8, color="black"),
axis.text.y = element_text(size=8, color="black"),
legend.text=element_text(size=10),
plot.title = element_text(size = 20, face = "bold", colour = "black", vjust = -1))+
scale_fill_manual(values = c(Exports = "#0072B2", Imports = "#56B4E9", Balance="red"), name="") +
scale_colour_manual(values = c(Exports = "#0072B2", Imports = "#56B4E9", Balance="red"), name="") +
coord_flip()+
labs(x = "", y = "")

graph3