The gap between desired and observed fertility in Europe. Part 2: Childlessness levels.

To better understand the effect of postponement we tried to measure it by calculating the effect of time spent on contraception while in a union by women who want to have children, a ‘conscious’ way to postpone childbearing.

Involuntary childlessness has gained momentum in mainstream media, which attribute a large part (if not the totality) of the blame on the postponement of childbearing: women wait too long to have children, they don’t hear their biological clock ticking and bam! no children. Ever.

Delaying childbearing to later ages has undoubtedly a repercussion on the biological ability to have children, but it is hardly a simple component of the total effect. What the mainstream discussion is often missing on is that the great majority of children are conceived in unions, hence it is a couple’s decision to have children. Indeed, being single is an important if not pivotal deterrent to motherhood, usually delayed until union formation.

This is why it is important to consider factors such as union dissolution risk to appreciate the variation in involuntary childlessness. To better understand the effect of postponement we tried to measure it by calculating the effect of time spent on contraception while in a union by women who want to have children, a ‘conscious’ way to postpone childbearing.

This is a preview of average population childlessness obtained through simulation using 3 variables: celibacy (%of women ending up single and never entering a union), divorce (%women previously in a union but currently without a partner), and waiting time, the average time spent on contraception at the beginning of a union by a woman who wishes to have children.

childlessness

>ggplot(dt, aes( Age, value, linetype=Variable, col=Variable))+
> geom_line( size=1) +
> scale_color_manual( values=c( "black", "#666666", "grey","black", "#666666", "grey"), guide=guide_legend( nrow=3, byrow=F, title =  "Childlessness" )) +
> xlab("")+
>ylab("")+
>scale_linetype_manual( values=c("solid", "solid",  "solid", "twodash", "dotted", "dashed"), guide=guide_legend( nrow=3, byrow= F, title =  "Childlessness" ))+
>theme( plot.margin= unit(c(1,4,1,1), "cm"), legend.position="bottom", legend.direction= "vertical")

1. ggplot(dt, aes( Age, value, linetype= Variable, col=Variable))

linetype= Variable and col=Variable set in the aes tell ggplot to automatically divide the lines based on the number of Variable(s);

2. scale_color_manual sets the colors of the lines contained in values. I was not satisfied with what I got with scale_color_grey so I set my colors manually (_manual!);

3. since I want the legend at the bottom AND in two columns (or 3 rows) AND I have two features specified in the aes I need to add a guide=guide_legend(nrow=3) to each scale_blablabla_manual (that is to say scale_color_manual AND scale_linetype_manual);

4. In guide=guide_legend the byrow=F means that I do not want the legend to appear ordered by row, but rather by columns;

5. in theme( legend.position=”bottom”) tells ggplot to put the legend below the graph and legend.direction to plot it in a vertical way (which I divide in 3 rows)

A ggmap of 2015 Israeli elections by city

IL_el_percThe recent Israeli elections are a reminder of how Demography and Space play a crucial role in the outcome of the 20th Knesset. For more insight, read the full Demotrends blog post by Ashira Menashe-Oren the demographics of the Israeli electorate here. The map has been done using ggmap and ggplot, two simple mapping tools I really like. If you are interested in the code, below you can find the relative syntax and data.

To start upload the libraries:

library(maptools) #reads the shape file 
library(ggmap) 
library(ggplot2)

Download the shape file (I normally use Diva-GIS website) and read it:

map.ogr<- readOGR(".","ISR_adm1")

Data set:

df <- structure(list(lon = c(35.148529, 35.303546, 34.753934, 34.781768,34.989571, 34.824785, 34.808871, 34.883879, 34.844675, 34.90761, 35.010397, 34.871326, 35.21371, 34.655314, 34.887762, 34.792501, 34.574252, 34.791462, 34.748019, 34.787384, 34.853196, 34.811272, 34.919652, 34.888075, 35.098051, 35.119773, 34.872938, 34.835226, 34.988099, 35.002462), lat = c(32.517127, 32.699635, 31.394548, 32.0853, 32.794046, 32.068424, 32.072176, 32.149961, 32.162413, 32.178195, 31.890267, 32.184781, 31.768319, 31.804381, 32.084041, 31.973001, 31.668789, 31.252973, 32.013186, 32.015833, 32.321458, 31.892773, 32.434046, 31.951014, 33.008536, 32.809144, 31.931566,32.084932, 31.747041, 31.90912), City = structure(c(30L, 19L,24L, 29L, 9L, 25L, 7L, 11L, 10L, 14L, 16L, 23L, 13L, 1L, 21L,28L, 2L, 4L, 3L, 12L, 20L, 27L, 8L, 15L, 18L, 22L, 26L, 6L, 5L, 17L), .Label = c("Ashdod", "Ashkelon", "Bat yam", "Beersheva",  "Beit  Shemesh", "Bnei brak", "Giv'atayim", "Hadera", "Haifa",  "Herzliyya", "Hod HaSharon", "Holon", "Jerusalem", "Kefar Sava",  "Lod", "Modi'in - Makkabbim - Re'ut", "Modi'in Illit", "Nahariyya", "Nazareth ", "Netanya", "Petach Tikva", "Qiryat Atta", "Ra'annana",  "Rahat", "Ramat gan", "Ramla", "Rehovot", "Rishon", "Tel-Aviv",  "Umm Al-Fahm"), class = "factor"), most.votes = c(96.28, 91.41,  87.62, 34.03, 24.98, 30.93, 40.1, 38.77, 34.2, 34.66, 28.95,  32.75, 23.9, 30.96, 27.87, 29.78, 39.31, 37.17, 32.88, 30.86,  33.14, 26.95, 31.77, 32.22, 34.25, 35.01, 39.1, 57.56, 27.89,  71.63), party = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,  2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L), .Label = c("joint list", "labour", "likud", "yahadut hatora"), class = "factor")), .Names = c("lon", "lat",  "City", "most.votes", "party"), class = "data.frame", row.names = c(NA,  -30L)) 

get the map using get_map

gmap <- get_map(location=c(34.2,29.4,36,33.5),zoom=7,source="stamen",maptype="watercolor")

and plot the map:


ggmap(gmap)+ 

geom_polygon(aes(x = long, y = lat, group=id), data = map.ogr, color ="blue", fill ="white", alpha = .8, size = .4)+ 

geom_point(aes(x=lon,y=lat,color=party,size=most.votes),data=df)+ scale_colour_discrete("Coalition", labels = c("Joint List", 
"Labour","Likud","United Torah Judaism"), breaks = c("joint list", 
"labour","likud","yahadut hatora")) +  
scale_size_continuous("Coalition", labels = c("Joint List",
 "Labour","Likud","United Torah Judaism"), breaks = c("joint list", 
"labour","likud","yahadut hatora"), range=c(10,15), guide = FALSE)+ 
theme(axis.text=element_text(size=18), 
plot.title=element_text(size=rel(3)), 
legend.key = element_rect(fill = "white"), 
legend.background =element_rect("white"), 
legend.text = element_text(size = 25), 
legend.title = element_text(size = 25))+ 
guides(colour = guide_legend(override.aes = list(size=8)))+  
labs(x="",y="")

IL_el_perc_city_names_color If you want to add city names you can use the “annotate” option, adding the code below after guides(...)+. I have modified the coordinates to avoid overlapping of labels and colored names to match the color of the winner party.

annotate("text", x=c(35.14853+ 0.2,35.21371+0.15,35.00246+ 0.15,34.79146+0.15, 34.98957-0.08,34.78177-0.14), 
y=c(32.51713,31.76832,31.90912,31.25297, 32.79405,32.08530),
size=5,font=3, 
label=c("Umm Al-Fahm","Jerusalem","Modin  Illit",
"Beersheva","Haifa","Tel Aviv"), 
color=c("darkred","blue4","deeppink4", "blue4",
"springgreen4","green4"))+

For beginners I highly recommend ggplot2 mailing list, a great and shame-free place to learn.